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A method is presented for determination of the mixing coefficient in a fluidized bed by means of a math-  
ematical  model of the process. A numerical example is given for the case of an ore-drying process. 

In fluidized beds intensive particle mixing takes place. As shown by experiment, in the fluidized beds of  large in- 
dustrial reactors the rates of chemical  reactions or changes in other process parameters are commensurate with the rate 
of  mixing of  the particles, so that in calculating the yield it is not sufficient to consider the reactor as a lumped capa-  
city; on the contrary, it is necessary to take into account the finite particle mixing time. 

To allow for this factor certain authors [1] have proposed to introduce a mixing coefficient (by analogy with the 
diffusion coefficient in the theory of liquids and gases) and assume that Fick's equation 

(I) = - -  D g r a d  p ( ! )  

is applicable to a fluidized bed. 

The main difficulty here is that there have been very few studies of the mixing coefficient. The available data 
[1] are fragmentary and inconsistent. Moreover, there is a lack of data on the mixing coefficients for large-scale (indus- 
trial) apparatus. 

Knowledge of  this coefficient is necessary to set up mathemat ical  models of fluidized-bed processes in which the 
particle mixing time cannot be disregarded. 

On the other hand, using a mathematical  model of the process, it is possible to determine an unknown mixing 
coefficient, if the necessary experimental data are available. 

The mixing coefficient can be determined by periodically injecting labeled particles into the bed and measuring 
their concentration along the bed at specified intervals of time. 

In a continuous technological process characterized by the variation of some processing coordinate (for example, 
the amount of  reduced or residual sulfur in the Pr9cess of roasting sulfide ores, the relative moisture content in drying 
processes, etc.; we will henceforth call this coordinate the degree of processing)there is no need to use labeled particles 
to find the mixing coefficient. In such processes, under steady-state conditions, the value of  the mixing coefficient de 
termines the distribution along the bed of  the degree of processing, averaged in a given section over all the particles or 
the individual fractions. The shape of  this curve also depends on the kinetics of the process. 

Thus, we may draw the following conclusion. If  the kinetics of  the process have been sufficiently studied and, with 
the aid of a mathematical  model, the relation between the shape of the distribution curve for the averaged, in the above 
sense, degree of  processing and the mixing coefficient has been found, then, by determining experimentally the distri- 
bution of the degree of processing along the length of  the furnace, we can uniquely assign to each such distribution a 
corresponding mixing coefficient. 

In references [2, 3] mathematical  models of thermochemical  processes in a fluidized bed were presented in gen- 
eral form; these take the form of equations for the probability density function p(r, d, m, t). 

For a horizontal reactor with total mixing along the vertical coordinate the equation is written in the form 

82 O p dm d p = D P + ~p. (2) 
Ot Ox 2 Om dt 

The value of dm/dt  is determined by the kinetics of the process and may depend on temperature. In this case Eq. 
(2) must be supplemented by the heat balance equation. 

In deriving Eq. (2) variation in the radius of the particles during the process was neglected. 

By solving Eq. (2), i . e . ,  obtaining the function p(x, d, m, t), we can find the mean value of the degree of pro- 
cessing at any section along the length of the furnace N(x ,  d, t): 
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m = ~mpdrn/~ pdm. (3) 

Expression (3) gives the relation between the distribution of the averaged degree of  processing along the length of 
the furnace and the mixing coefficient, which can now be found after determining experimentally the relation N(x ,  d) 
in static regimes. 

By varying the conditions of  the experiment, it is possible to study the dependence of the coefficient D on differ- 

ent parameters. 

In constructing the mathematical  model it is possible to use another approach, which in a number of  cases ismore 
fruitful. The degree of processing m and particle density p are considered as functions of the coordinates x and t, and in- 
stead of (2) two equations are written, from which both functions are determined: 

a p  = D  0~----2--P %0; (4) 
dt �9 Ox ~ 

0 ~ (m p) - -  ~ m~. (5) 0 ( r a p ) - - D - -  ~ q s  
Ot Ox 2 

This approach is more convenient in the sense that solution of equations (4) and (5) immediately  gives the averaged de- 
gree of processing in the coordinates x, d, t. 

Thus by determining for a specific process the source density, carryover factor, and the boundary conditions 
needed to supplement equations (4), (5), one acquires the possibility of determining the mixing coefficient D (d) from a com-  
parison of  the experimental curves m (x, d) with the theoretical. 

Below we present an example of  determination of the mixing coefficient using a mathematical  model of the dry- 
ing process for a polydisperse material in a fluidized bed. The degree of processing is the moisture content of  the parti- 
cles relative to the weight of  dry material, which we will denote by w. 

The experimental investigations necessary for refining the mathematical  model of the drying process and recording 
the moisture content distribution along the length of the oven were carried out on industrial equipment. Material was 
charged at one end of the oven and discharged at the other, i . e . ,  the drying oven represented a typical system with 
distributed parameters. Discharge was over a baffle plate 280 mm high. 

The basic parameters of the drying process were: solid throughput 1400-2000 kg/hr; mass flow rate of heat trans- 
fer agent 2340-3150 kg/hr, m2; velocity of  heat  transfer agent referred to free cross section of  oven 1. 0-1. 4 nm/sec; 
initial moisture content of  material  8-10%; final moisture content 0.5-2.  0%; initial temperature of  heat transfer agent 
200-300~ mean diameter of processed granules of copper-zinc concentrate 0. 5-4 ram. 

In constructing the mathematical  model it was assumed that all the particles belonged to one of three fractions 
containing only particles of equal size, To fraction I we assigned particles between 0. 5 and 1. 5 mm in diameter 
(d 1 = 1 ram), to fraction II, those between 1. 5 and 2. 5 mm (d 2 = 2 ram), and to fraction III, those between 2. 5 and 

4 mm (ds : 3 ram). 

The carryover factor a was equal to 5 �9 10 -s see -z for fraction I; for fractions II and I I I a  = 0. 

The boundary conditions were determined by the experimental conditions and the process of charging and dis- 
charging. In our case of continuous operation the boundary condition at x = 0 must be given in the form of an input flux 

0 p = qb. (6) 
D ~ x x =  o 

The presence of an overflow baffle at the second boundary determines the boundary condit~. : = / 

P }.~=t = ,%- (7) 

The question of  source density reduces essentially to a question o f  drying rate, i . e . ,  to the question: how much 
heat is absorbed by a granule in unit t ime and how much of  this heat goes into the evaporation of  water .9 

The quantity of heat absorbed by a granule in unit t ime is determined by the heat transfer coefficient, and the 
question of how much heat goes into the evaporation of moisture is equivalent to the question of  the drying kinetics of  

the granules. 
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Two cases are possible [4]: 1) the drying rate ks limited by the amount of heat supplied in unit t ime to unit surface 
area of the granule; the temperature of the material  is equal to the wet-bulb temperature at which evaporation occurs 
(external problem); 2) the drying rate is limited by diffusion of water to the evaporating surface; the temperature of the 
material  ks not equal to the wet-bulb temperature, but gradually increases; the evaporating surface sinks into the granule 
(internal problem). 
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Fig. 1. Distrubution of moisture content in different fractions of  m a -  
terial along the length of  the oven. (To - 250~ fraction I - 26%, 
fraction II -- 85%, fraction III - 40%; G m = 0. 435 kg/sec - A and 
0. 522 kg/see - B): a) Fraction I; b) II; c) IIL Continuous curve - 
theoretical; broken curve - experimental. 

Observations of the temperature of  the fluidized bed during the experiments indicated that at final moisture con- 
tents of not less than 0.5-1.  5%, which satisfies the technological requirements of  the process, drying of the granules may 
be treated as an external problem. 

Investigations showed that with a bed height of  280-300 mm, the heat transfer agent is able to give up all its heat, 
and leaves the bed at a temperature equal to the wet-bulb temperature. 

Under these conditions the source density is given by the following expression: 

Ghch(To --  Twb) d2 9 
q S ~ - -  - -  

rva (d) 2 d  
d 

It is assumed that the heat is divided among the fractions in proportion to their total surface in the bed. 

If  account is taken of  the heat expended on heating material  entering the bed at a temperature Tm0 to the wet- 
bulb temperature Twb and if it is assumed, for simplicity, that during heating there is no evaporation of moisture from 
the material,  then the source density must be determined as follows: 

i 0; x < x '  
qs  = - -  GhCh(T~ d29 ; x ~ x ' ,  (8) 

rva ( d) E d~ 9 
d 

where 

X I = 
(c m + C'w W,,n ") (T,,,,,b - -  T 0 ) Gm 

GhCh(T o -- Twb ) 
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Thus, subst i tut ing the values found for the carryover factor and source density (8) in Eqs. (4), (5) and supp lemen t -  
lag them with boundary condi t ions  (6), (7), we obta in  a m a t h e m a t i c a l  model  of the drying process for a polydisperse 

ma te r i a l  which is comple te ly  de te rmina te  except  for the mix ing  coeff icient .  

D " t0  u \ We solve Eqs, (4), (5) under stat ic  condit ions with different mix ing  coeff icients  

~ ,  D(d), and by compar ing  the ob ta ined  curves w(x, d) with the corresponding exper i -  
\ m e n t a l  ones we de te rmine  the mix ing  coeff icient .  

e ", 
For specific f lu id iza t ion  condit ions (v = 1. 04 nm / sec ,  d = 2. 25-2.  6 mm)  the 

~ following values of the mix ing  coeff ic ient  were ob ta ined  (Fig. 1): for f ract ion I, D = 
r ~  = 9. 2 �9 10"3; for II, D = 4. 95 �9 10-s; for III, D = 3. 54 �9 10-s m2/sec.  

~5 / /,5 2 2,5 c/ Figure 1 also shows the ag reemen t  between the expe r imen ta l  curves for the 
mois ture  content  distr ibution in different fractions of the m a t e r i a l  a long the length  of 

Fig. 2. Mixing coeff ic ient  as the oven and theore t ica l  curves obta ined using the ca lcu la ted  mix ing  coeff icients  for 
a funct ion of par t ic le  size. other conditions.  

The obta ined  dependence  of mix ing  coeff ic ient  on par t ic le  size is presented in Fig. 2. In the case e x a m i n e d  this 

dependence  m a y  be expressed approx imate ly  as D ~-" 1/d. 

NOTATION 

- solid par t ic le  flux; D - mix ing  coeff ic ient ;  P - par t ic le  density; m - degree of  processing; d - par t ic le  d i -  
ameter ;  a(d)  - weight  of ind iv idua l  part icle;  r = {x, y, z} - r ad ius -vec to r  of point  in f lu idized bed; x - hor izonta l  

coordinate;  t - t ime;  a - carryover factor; w - p a r t i c l e  moisture content;  G h - mass flow rate of hea t  transfer agent;  

C h - specif ic  heat  of hea t  transfer agent;  To - i n i t i a l  t empera ture  of heat  carrier; Twb - w e t - b u l b  temperature ;  r v - 
specif ic  heat  of vaporizat ion;  c m - specif ic  heat  of  dry mater ia l ;  c w - specif ic  hea t  of water; G m - mass flow rate of 

mater ia l ;  v - ve loc i ty  of hea t  transfer agent  referred to free cross section of oven; qs - corresponding source density. 
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